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The stability of motions in short periods of time has been investigated under the single-mode excitation
condition for the Fermi-Pasta-Ulam-b model. It is the main concern of this paper to determine the stability
against both the energy density and the excited mode’s wave number. We propose the average variational
equation as a tool for the stability analysis. The stability is also examined by the numerical integration of the
equations of motion and the results are in good agreement with those of the theoretical analysis. We show that
the stability is intricately dependent on the energy density and the excited mode’s wave number. In particular,
it is found that the motion of the normal mode whose wave number is within a specific range is extremely
stable.@S1063-651X~96!03311-9#

PACS number~s!: 46.10.1z, 05.45.1b, 05.20.2y

I. INTRODUCTION

The study of the stability properties of motions of one-
dimensional anharmonic lattices started by Fermi, Pasta, and
Ulam @1# was concerned with the dynamical foundations of
classical statistical mechanics. It is well known that the ob-
served motions were not stochastic but rather regular, con-
trary to their expectation: instead of the stochastic energy
exchange among the normal modes, an almost periodic and
regular energy exchange was observed. After Fermi, Pasta,
and Ulam’s work, the stability properties of one-dimensional
anharmonic lattices and their relation to the ergodic proper-
ties were of great interest, and many studies have been done
on the problem@2–16#.

To study the stability properties of one-dimensional an-
harmonic lattices, the simplest problem is that of the single-
mode excitation or the narrow packet excitation: only one
normal mode with a wave numberk is initially excited or a
wave packet with mean wave numberk and small size
dk/k!1, wheredk is the characteristic size of the packet in
k space, is initially excited. This simple problem is important
to understand the dynamics of one-dimensional anharmonic
lattices. However, it has not been fully understood in spite of
its importance. We will study this problem in the present
paper.

There are some analytical and numerical results concern-
ing the problem. It has been found by works following@1#
that there is a certain kind of the stochasticity limit, which is
defined as the critical energy density~energy per degree of
freedom! distinguishing the stable and stochastic motions.
First, we speak of analytical results that determine the sto-
chasticity limit against the number of degrees of freedom,
and the wave number of the excited mode. For the Fermi-
Pasta-Ulam~FPU! b model, one of the most widely known
analytical results is that of Izrailev and Chirikov obtained by
applying the resonance overlap criterion@3# ~see also Ref.
@17#!. The resonance overlap criterion had been developed as
the method determining the stochasticity limit of a Hamil-
tonian system with small degrees of freedom. In order to
apply the criterion to the FPU-b model with large degrees of
freedom, Izrailev and Chirikov reduced the dimensionality of
the system in a way that could permit the application of the

resonance overlap criterion, taking into account only one of
the resonance terms. Applying the resonance overlap crite-
rion, the stochasticity limitec was determined as

ec;H 1

bk
, k!N

p2k2

bN4 , N2k!N,

~1!

whereb is the nonlinear coupling constant,k the wave num-
ber of the excited mode, andN the number of degrees of
freedom. The stochastic motions appear in the energy density
rangee.ec . Generally speaking, if the mode with the larger
wave numberk is more stochastic at a fixed energy density,
the ec should decrease with an increase in thek correspond-
ingly. Hence the result of the case ofk!N in Eq. ~1! indi-
cates that the larger-wave-number mode excitation is more
stochastic. In view of this fact, the lack of the stochasticity
observed in Ref.@1# was attributed to the smallness of the
wave number chosen in Fermi-Pasta-Ulam’s numerical ex-
periments. On the other hand, Berman and Kolovskij ap-
proximated the FPU-b model by the nonlinear Schro¨dinger
equation under the narrow packet conditiondk/k!1 to de-
termine the stochasticity limit@4#. The stochasticity limit was
obtained as

ec;
2p2k

3bN2 . ~2!

This indicates that the larger-wave-number mode excitation
is less stochastic and qualitatively agrees with the result of
the case ofN2k!N in Eq. ~1!. These two analytical results
are necessarily qualitative and perhaps, in our opinion, fail to
grip the whole picture of the stability properties because the
drastic simplifications are introduced in the analyses.

Regarding the numerical results, the situation is still am-
biguous and there is no definitive result to the problem. Here
we refer to the results for the FPU-b model presented in Ref.
@12#. In that paper the authors defined the relaxation time as
the time needed for energy concentrated on a narrow packet
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at the initial to be distributed over most of the modes. The
longer relaxation time can be reasonably considered to mean
less efficient stochastic pumping in phase space. Therefore,
they numerically computed the relaxation time as a measure
of the stochasticity. The observed relaxation time has the
tendency, roughly speaking, to increase with increasing the
wave number when the energy density is smaller than a cer-
tain critical value, while the opposite tendency is observed
for the energy density larger than the critical value~in Ref.
@12#, Fig. 11!. Their main consequence is that the stochastic-
ity has the opposite dependence on the wave number be-
tween the lower- and higher-energy density range.

The stability properties of the single-mode excitation or
the narrow packet excitation have not been fully understood,
in spite of their importance in understanding the dynamics of
one-dimensional anharmonic lattices. In fact, the results are
different among the above-mentioned works. The present pa-
per aims to clarify, for the specific case of the FPU-b model,
how the stability depends on the energy density and the wave
number when a single normal mode is initially excited. We
conjecture that the stability is more intricately dependent on
the wave number and on the energy density, contrary to the
simple dependences stated in the above-mentioned works.
Our results support the conjecture; the stochasticity of the
normal mode is enhanced intermittently in some specific
ranges of the wave number, while the normal modes having
the wave number within a certain range are extremely stable.
These findings are quite recent and have not yet been re-
ported elsewhere to our knowledge.

For the above-mentioned purpose, we propose a kind of
average variational equation as a tool to examine the stability
of the normal mode and numerically solve the equation. To
make a comparison, we numerically integrate the equations
of motion of the relevant model, computing the relaxation
time to quantify the stability. The present paper is organized
as follows. In Sec. II, we describe the FPU-b model, the
average variational equation, and the relaxation time. In Sec.
III, we report the results of the numerical calculations and
give the discussion. In Sec. IV, some conclusions are drawn.

II. DYNAMICAL MODEL AND TOOLS
OF STABILITY ANALYSIS

A. FPU-b model and stability of the normal mode

In the present paper, our investigation is made for the
dynamical model described by the Hamiltonian

H5
1

2(
i51

N21

pi
21(

i51

N F 12 ~qi2qi21!
21

b

4
~qi2qi21!

4G ,
~3!

which is called the FPU-b model. This Hamiltonian de-
scribes the one-dimensional anharmonic lattice with nearest-
neighbor interaction. We setb51 and N5128. As the
boundary condition we employ the fixed-end condition, i.e.,

q05qN50. ~4!

The equations of motion derived from the Hamiltonian are

d2qi
dt2

5qi111qi2122qi1b$~qi112qi !
32~qi2qi21!

3%.

~5!

For convenience of discussion, we introduce the normal
mode coordinates. The transformationq°Q defined by

qi5A2

N (
k51

N21

QksinS pk

N
i D ~ i51,2, . . . ,N21! ~6!

gives the normal modes of the corresponding harmonic sys-
tem.Qk is the amplitude of thekth normal mode. The char-
acteristic frequency of thekth normal mode is given as

vk52sinS pk

2ND . ~7!

In terms of the normal modes coordinatesQ and the conju-
gate momentaP, the Hamiltonian is rewritten as

H5 (
k51

N21 S 12 Pk
21

1

2
vk

2Qk
2D

1
b

8N (
k1 ,k2 ,k3 ,k451

N21

vk1
•••vk4

Qk1
•••Qk4

3D~k1 ,k2 ,k3 ,k4!, ~8!

whereD(k1 ,k2 ,k3 ,k4) represents the selection rule of the
interaction among the normal modes and it is explicitly writ-
ten as

D~k1 ,k2 ,k3 ,k4!5d~k11k2 ,k31k4!1d~k11k3 ,k21k4!

1d~k11k4 ,k21k3!1d~k11k21k3 ,k4!

1d~k11k21k4 ,k3!1d~k11k31k4 ,k2!

1d~k21k31k4 ,k1!2d~k11k21k3

1k4,2N!2d~k11k21k3,2N1k4!

2d~k11k21k4,2N1k3!

2d~k11k31k4,2N1k2!

2d~k21k31k4,2N1k1!, ~9!

where d is the Kronecker delta function. The equation of
motion for thekth normal mode is

d2

dt2
Qk1vk

2Qk1
b

2N

3 (
k1 ,k2 ,k351

N21

vkvk1
vk2

vk3
Qk1

Qk2
Qk3

D~k,k1 ,k2 ,k3!

50. ~10!

As the stability of the normal mode is the main subject of
the present study, one must be clear about the definition of
the stability. We mention the definition in the following. The
initial condition discussed in the present study is the single-
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mode excitation condition; when thekth normal mode is
excited, the amplitudes of the other modes are set to zero at
the initial condition

Qi~0!5Qi̇~0!50~ iÞk!. ~11!

Due to this initial condition,Qi(t).0(iÞk) holds for a
short period of timet,ts . ts is the time scale within which
the single-mode oscillation of thekth mode lasts without
significant energy exchange with the other modes. The time
scalets depends on the wave numberk and the energy den-
sity e, wheree is related to the total energyE as e5E/N.
We define the stability of the normal mode in terms of the
ts ; if ts is large, the normal mode is regarded as stable. The
method of estimatingts by the numerical experiments will
be described.

If the approximationQi(t).0(iÞk) is made in Eq.~10!,
the equation of motion for thekth normal mode, which is the
mode excited initially, is approximated as

d2

dt2
Qk1vk

2Qk1
3b

2N
vk

4Qk
350. ~12!

It is well known that the solution of Eq.~12! may be written,
with the Jacobi elliptic function, in the form

Q̃k~ t !5ANa cn~st,k82!, ~13!

where

a25
4k82

3bvk
2~122k82!

, s25
vk

2

122k82
, ~14!

and k8 2 is the modulus of the Jacobi elliptic function. The
modulusk8 2 is related to the energy densitye as

e5
2k82~12k82!

3b~122k82!2
. ~15!

In phase space, the motion associated withQ̃k(t) forms
the periodic orbit G̃(t)5„q̃(t),p̃(t)…, where q̃
5(q̃1 , . . . ,q̃N21) is the positions obtained through the
transformation Eq.~6! as

q̃i5A2

N
Q̃ksinS pk

N
i D ~ i51,2, . . . ,N21!, ~16!

and p̃5( p̃1 , . . . ,p̃N21) are the conjugate momenta. Since
Q̃k(t) is not the exact solution but the approximate one, the
periodic orbitG̃(t) is also the approximate one. In this sense,
we call G̃(t) thepseudoperiodic orbit. An orbit starting with
the single-mode excitation condition may stay close to the
pseudoperiodic orbit during a certain short period, and then it
may diffuse in phase space. The length of the period is char-
acterized byts . That is,ts is the time scale of the diffusion
in phase space.

B. Average variational equation

In this subsection, we describe theaverage variational
equation, which we propose as a tool to examine the stability
of the normal mode. Let us consider a generic Hamiltonian
system of the form

H5(
i51

n pi
2

2
1V~q!, ~17!

whereV(q) is a nonlinear interaction potential amongn par-
ticles with unit mass, positionsq5(q1 , . . . ,qn), and mo-
mentap5(p1 , . . . ,pn). The FPU-b model is also included
in this class. The equations of motion derived from the
Hamiltonian

dqi
dt

5pi ,
dpi
dt

52
]V

]qi
~ i51,2, . . . ,n!, ~18!

exhibit the stochastic motions for most of the interesting
choices ofV(q). One of the characteristic features of the
stochastic motions is exponential growth of distance between
nearby orbits in phase space. Hence the stochasticity of mo-
tions can be quantified by the rates of the exponential
growth.

The exponential growth of distance is usually examined
through the variational equation, which is obtained by linear-
izing the equations of motion~18! along a reference orbit
„q(t),p(t)…. Let dq5(dq1 , . . . ,dqn) and dp
5(dp1 , . . . ,dpn) be the variations of the coordinates and
the momenta, respectively. The variational equation is given
in the form

dj

dt
5A„q~ t !)j ~19!

for variationsj5(dq,dp). The 2n32n matrix A„q(t)… is
defined as

A„q~ t !…5S 0 I

2V„q~ t !… 0D , ~20!

where0 and I are then3n null and unit matrices, respec-
tively, andV„q(t)… is then3n matrix of second derivatives
of V whose elements are defined as

@V„q~ t !…# i j5
]2V„q~ t !…

]qi]qj
. ~21!

The solutionj(t) of Eq. ~19! grows exponentially when the
exponential divergence of nearby orbits of the original dy-
namical system Eq.~18! occurs.

The stability of the normal mode, which has been defined
in terms of thets , can be reasonably considered to be quan-
tified also in terms of the exponential growth rates: the
smallerts corresponds to the larger exponential growth rates.
As we are interested in the short-time stability of the normal
mode, the exponential growth rates of the short period of
time t,ts are useful. Based on the fact that any orbits start-
ing with the single mode excitation condition stay close to
the pseudoperiodic orbit fort,ts , we employ the varia-
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tional equation along the pseudoperiodic orbit to obtain the
approximate exponential growth rates of the short period of
time. That is, the variational equation employed is

dj

dt
5A„q̃~ t !…j, ~22!

whereq̃(t) is the positions defined by Eq.~16!. For the FPU-
b model with the fixed ends, the (N21)3(N21) elements
of second derivatives ofV, which are included in the matrix
A, are written as

]2V

]qi]qj
5H 213b$~qi2qi11!

21~qi2qi21!
2%, i5 j

2123b~qi2qj !
2, i5 j61

0 otherwise.
~23!

We make mention of the solution of Eq.~22!. Since the
q̃(t) is periodic, the matrixA„q̃(t)) is also periodic. Accord-
ing to the Floquet theory, the solution can be obtained in the
form

F~ t !5P~ t !exp~ tL!, ~24!

whereF(t) is the (N21)3(N21) matrix whose columns
consist of the independent solutions of Eq.~22!, P(t) the
(N21)3(N21) matrix whose elements are periodic func-
tions with the same period asA„q̃(t)…, and L the
(N21)3(N21) constant matrix. It depends on real parts of
eigenvalues of the matrixL whether or not the solution of
Eq. ~22! is unstable~exponentially growing!: if there are ei-
genvalues of the positive real part, the solution is unstable.
The largest real partl1, which is called thelargest charac-
teristic exponent~LCE!, gives the maximum growth rate of
the solution, and it is useful to quantify the stability of the
normal mode. Thel1 is calculated to quantify the stability.

At the end of this subsection, we mention the reason why
we call Eq.~22! the average variational equation. We take
the pseudoperiodic orbitG̃(t)5„q̃(t),p̃(t)… in phase space. A
schematic illustration of phase space is shown in Fig. 1. Let
V be a certain small ensemble of initial phase points near the
point G̃(0)5„q̃(0),p̃(0)… and Ga(t) be a solution of Eq.
~18!, which has the initial pointGa(0) within theV. The
variational equation alongGa(t) is

d

dt
j~ t;j0!5A„Ga~ t !…j~ t;j0!, ~25!

wherej(t;j0) is the solution that satisfiesj(0;j0)5j0 and
A„Ga(t)… stands forA„qa(t)…. If we take the ensemble aver-
age in Eq.~25! over theV, we obtain the equation

d

dt
^j~ t;j0!&5^A„Ga~ t !…j~ t;j0!&, ~26!

where^& represents the ensemble average with respect to the
initial phase pointsGa(0) over theV. We divide j(t;j0)
into the average and the deviation from it,

j~ t;j0!5^j~ t;j0!&1dj~ t !, ~27!

and substitute into Eq.~26!. Then, we obtain

d

dt
^j~ t;j0!&5^A„Ga~ t !…&^j~ t;j0!&1^A„Ga~ t !…dj~ t !&.

~28!

Since the ensembleV is sufficiently small and close to the
point G̃(0), it can beexpected that, for the short period of
time t,ts , the sample orbitsGa(t) stay close to the pseudo
periodic orbitG̃(t). Hence we assume that the second term
that containsdj(t) on right-hand side of Eq.~28! can be
neglected and̂ A„Ga(t)…&.A„G̃(t)…. If we admit the as-
sumption, then we obtain

d

dt
^j~ t;j0!&5A„G̃~ t !…^j~ t;j0!&. ~29!

This equation describes, for the short period of time, the time
evolution of the ensemble average of the variationj. Equa-
tion ~29! is just the same as Eq.~22!. Therefore, Eq.~22! can
be interpreted as the variational equation, which describes
the time evolution of the ensemble average ofj. In this
sense, we call Eq.~22! the average variational equation. The
LCE has the local meaning in phase space, that is, it repre-
sents the mean divergence rate between nearby orbits in the
vicinity of the pseudoperiodic orbit.

C. Relaxation time

The time scalets is estimated by the numerical integra-
tion of the equations of motion~5! to examine the stability of
the normal mode. In this subsection, we describe how we
estimatets .

We define the harmonic energyEi of each normal mode
as

Ei~ t !5
1

2
@Q̇i

2~ t !1v i
2Qi

2~ t !# ~30!

and the weightswi , which give the fraction of the total har-
monic energy in each normal mode, by

wi~ t !5
Ei~ t !

(
m51

N21

Em~ t !

. ~31!

Let us define the spectral entropyS(t) as @11#

FIG. 1. Schematic illustration for a pseudoperiodic orbit.
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S~ t !5 (
i51

N21

2wi~ t !lnwi~ t !. ~32!

S(t) can be normalized as

h~ t !5
Smax2S~ t !

Smax2S~0!
, ~33!

whereSmax5 ln(N21). h(t) is a parameter to measure the
extent of the energy exchange among the normal modes. If
there is no energy exchange among the normal modes
S(t)5S(0), h(t) remains unity. On the contrary,h(t) de-
creases if the energy exchange occurs;h(t)50 represents
the state where energy is equally shared among all the nor-
mal modes. We define the relaxation timetR as the time at
which h(t) reaches 0.6, i.e.,h(tR)50.6. The time scalets
can be estimated by calculating the relaxation timetR de-
fined above. We will use the inverse of the relaxation time
1/tR as a stochasticity indicator, which can be considered
proportional to the stochasticity of the normal mode.

III. RESULTS AND DISCUSSION

It has been studied via the average variational equation
how the stability of the normal mode varies with the wave
numberk and the energy densitye. We have numerically
calculated the LCE of the average variational equation~22!
for various sets ofk ande. The results are shown in Fig. 2,
where the LCE is plotted as a function of the relative wave
number k/N and the energy densitye, i.e., l1(k/N,e).
l1(k/N,e) is represented in Fig. 2~a!, and the contour plot is
in Fig. 2~b!.

The qualitatively different new features can be found in
Fig. 2, in addition to the expected tendency thatl1 increases
with increasing energy density at a fixed wave number. That
is, there is the interval in the wave number in whichl1
shows a sharp decrease and remains remarkably small even
at the large energy density. The interval is located at
k/N.0.7. This predicts that if the normal mode having the
wave number within the interval is excited, it oscillates for a
long time without significant energy exchange with the other
normal modes, namely,ts ~or tR) of the mode is large. As
the normal mode in the interval is stable, we call the interval
in k space thestability band. The other feature is that there
are some peaks ofl1 in the relative wave-number range
smaller than that of the stability band. Three peaks of the
l1 can be clearly seen atk/N. 0.50, 0.34, and 0.24 and
more peaks, which are very weak, may be perceivable in the
smaller wave number range. The existence of these peaks
predicts that the stochasticity is enhanced intermittently at
some specific values of thek/N corresponding to the peaks.
We call this feature theridge structure.

It is seen in Fig. 2 thatl1 tends to increase ask/N in-
creases at a fixed energy density if one ignores the above-
mentioned peaks ofl1. This means that the mode of the
larger wave number tends to be more stochastic. Correspond-
ingly, the energy densityec8 at whichl1 has a certain con-
stant value, namely, one of the contour curves, is lowered
with increasing wave number. Approximately, the following
relation can be found from the figure:

ec8;S kND 22

. ~34!

This relation betweenec8 and thek is in agreement qualita-
tively with that of theec obtained by Izrailev and Chirikov in
Ref. @3# @see Eq.~1!#: bothec and theec8 become lower with
increasingk, although they are quantitatively different with
respect to the exponents of the power laws. Therefore,ec8 can
be considered similar toec .

We proceed to the numerical experiments to confirm the
above predictions made by the LCE analysis. The relaxation
time tR has been calculated for various sets ofk/N ande to
make a comparison with the results of the LCE. The numeri-
cal integration of the equations of motion has been per-
formed by the leapfrog algorithm because of its symplectic
nature and simplicity.

tR has been calculated only for odd wave numberk for
the following reason. If one normal mode is excited initially,
the normal modes allowed to be excited are restricted due to
the selection ruleD(k1 ,k2 ,k3 ,k4): for instance, in the case
of N5128, ~i! if the mode of k54 is excited initially,
k54,12,20,28,36,44,52,60,68,76,84,92,100,108,116, and
124 are allowed; ~ii ! if k516 is excited initially,
k516,48,80, and 112 are allowed; and~iii ! if k564 is ex-
cited initially, no other modes can be excited. A detailed
discussion on the mode selection has been given in Ref.@6#.

FIG. 2. ~a! LCE l1 plotted as a function ofe and k/N. ~b!
Contour plot. The reference line of the power law (k/N)22 is also
plotted.
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As seen in the examples, when the mode of even wave num-
ber is excited initially, the number of allowed modes is con-
siderably different, according to the initial-excited wave
number. This difference has a significant effect on the decay
of h(t) and thus ontR , especially in the case that only a
small number of the modes are allowed. Theh(t) cannot
reach the reference value of 0.6 when only a few modes are
allowed: for instance, as only four modes are allowed in the
case ofk516 excitation,h(t) cannot decrease less than
12 ln4/ln128 (.0.714), which corresponds to the case that
energy is equally shared among the four allowed modes. In
such a case,tR cannot be used as a stochasticity indicator. In
contrast, in the case ofN5128, if the mode of odd wave
number is excited initially, all the modes of odd wave num-
ber are always allowed. Then, there is no difference in the
number of allowed modes. This is the reason why we have
made the calculation oftR only for odd wave number.

We briefly comment on the reliability of the numerical
integration. To examine the reliability, we have used the fact
that only the normal modes of odd wave number are allowed
when the initial excited mode has odd wave number; the
spectra of the harmonic energyEi have been examined at the
ends of some runs. We confirmed that only the odd modes
were excited, while energy of the even modes was suffi-
ciently small and negligible. This supports the reliability of
the numerical integration.

Figure 3 shows the inverse of the relaxation time 1/tR
plotted againstk/N and e. 1/tR is represented in Fig. 3~a!

and the contour plot is in Fig. 3~b!. For a set ofk/N and
e, we have made the numerical integration with two diff-
erent initial conditions: one, that all energy is given in
the kinetic part, i.e., Qk(0)50,12Q̇k

2(0)5E, and the
other that all energy is given in the potential part, i.e.,
Q̇k(0)50,12vk

2Qk
2(0)1(3b/8N)vk

4Qk
4(0)5E @cf. Eq. ~8!#.

There was no significant difference between the relaxation
timestR of both initial conditions and we evaluated the re-
laxation timetR by the average of those of the two initial
conditions.

1/tR shown in Figs. 3~a! and 3~b! is quite similar to the
LCE shown in Figs. 2~a! and 2~b!. Interestingly, there is the
interval in the wave number in which 1/tR shows a sharp
decrease and remains remarkably small even at the large en-
ergy density. The interval is found atk/N.0.7, which is the
same as the value obtained by the LCE analysis. The exist-
ence of the interval is clearly shown in Fig. 4, which gives
some sectional plots of 1/tR at fixed values ofe. This ex-
perimental result is quite consistent with the prediction of the
LCE analysis and gives strong evidence for the existence of
the stability band.

The ridge structure can also be found in the wave-number
range smaller than that of the stability band: some peaks of
1/tR appear intermittently at some specific values ofk/N.
The ridge structure can be seen in Fig. 4, where the peaks of
1/tR indicated by arrows appear atk/N. 0.50, 0.34, and
0.24. This feature is also in agreement with the prediction by
the LCE. One may suspect that the peaks could be attributed
to the statistical error. However, we conclude that the ob-
served ridge structure is not due to the statistical error but the
intrinsic structure, based on the fact that, in Fig. 4, the peaks
appear at definite values ofk/N that are predicted by the
LCE analysis whene is changed.

The decay curves ofh(t) of the modes ofk585, 65, and
51 are shown in Figs. 5~a!, 5~b!, and 5~c!, respectively. The
above modes correspond to three typical cases of stability:
k585 (k/N.0.66) andk565 (k/N.0.51) correspond to
the stability band and peak of 1/tR , respectively, and
k551(k/N.0.40) is chosen from the wave-number range
that is neither the stability band nor the peak of 1/tR .

FIG. 3. ~a! Inverse of the relaxation time 1/tR plotted as a func-
tion of e andk/N. ~b! Contour plot.

FIG. 4. Sectional curves of the 1/tR at several different
values of the energy density. From top to bottom
e5100,50.2,25.1,12.6,6.31,2.52, and 1.00.
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The induction phenomenon@8,9# is clearly seen in all
curves ofk581, in Fig. 5~a!: h(t) remains almost unity for
a certain period, which is called the induction period, and
then abruptly decreases. It should be noted that the induction
phenomenon can still be observed even at the large energy
density. By contrast, no induction period can be observed in
the curves ofk565, in Fig. 5~b!, though the energy densities
are much smaller than those of the previous case. Since the

stability of the mode ofk551 is intermediate between
k585 and 65, it is expected that the behavior ofh(t) is also
an intermediate one. In fact, the induction phenomenon can
be observed for the smaller energy densitye5 0.05, 0.10,
and 0.20, while for the larger energy densitye50.50 it can-
not be observed.

During the induction periods, the energy exchanges
among the normal modes are weak and regular, which may
be attributed to the motions stuck in thin stochastic layers of
the deformed Kolmogorov-Arnold-Moser~KAM ! tori. The
abrupt decreases ofh(t) following the induction periods
stand for the stochastic energy exchanges due to the diffu-
sion towards the stochastic sea in phase space. Therefore,
vanishing of the induction period can be considered to indi-
cate the destruction of the KAM torus. In view of this, the
above examples ofh(t) indicate that, for the modes within
the stability band, the corresponding KAM tori are not de-
stroyed but persist even at the large energy density, while for
the modes corresponding to the peaks of 1/tR the KAM tori
are destroyed at sufficiently smaller energy density. That is,
roughly speaking, larger 1/tR means smaller energy density
at which the destruction of the KAM torus occurs. Conse-
quently, the destruction of the KAM tori that correspond to
the single-mode oscillation proceeds quite inhomogeneously
in phase space with an increase in the energy density: the
energy density for the destruction is strongly dependent on
the wave number of the normal mode, affected by the ridge
structure or the stability band. We note that, in the smaller
range of wave numbers~roughly k/N,0.10), the induction
period vanishes at much smaller energy density than that
expected from the small 1/tR of those modes. In this range of
wave numbers, the smallness of 1/tR may be mainly due to
the small characteristic frequencyvk and does not mean the
persistence of the KAM tori at the larger energy density.

The narrow packet excitation is physically more relevant
than the single-mode excitation. Therefore, it should be ex-
amined whether the above-mentioned features, namely, the
ridge structure and the stability band, are relevant for the
narrow packet excitation. We have carried out only prelimi-
nary numerical experiment, where the narrow packet that
consists of two normal modes with equal energy, an odd
mode and next even mode, is excited as the initial condition.
The features were clearly observed in the experimental re-
sults and then the relevance of the features for the narrow
packet excitation was supported.

IV. CONCLUSION

The stability of the normal mode in short periods of time
has been studied under the single-mode excitation condition,
for the FPU-b model. The main purpose is to determine the
stability against both the energy density and the excited
mode’s wave number. As probes for examining the stability
the LCE of the average variational equation and the relax-
ation timetR were employed. The results obtained both by
the LCE and by the relaxation time are in good agreement
with each other.

The results show that the stability is intricately dependent
on both the energy density and the excited mode’s wave
number. The results can be summarized as follows.~i!

FIG. 5. Time evolution ofh(t). ~a! k585, ~b! k565, and~c!
k551.
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Roughly speaking, the motion tends to be more stochastic for
larger energy density and larger wave number.~ii ! There is
the interval for the particular stability in the wave number:
the normal mode whose wave number is included in the
interval is extremely stable, i.e., the stability band. The in-
terval is located atk/N.0.70. ~iii ! The stochasticity is en-
hanced intermittently at some specific values of the wave
number, i.e., the ridge structure. Feature~i! agrees with the
well-known analytical results by Izrailev and Chirikov re-
ported in Ref.@3#; however, the other two features~ii ! and
~iii ! are quite different. The finding of these features is the
main consequence of the present paper. The relevance of
these features for the narrow packet excitation has been sup-
ported also by preliminary numerical experiments. In the
present paper, our study was made for the FPU-b model, but

similar features may be found in other one-dimensional an-
harmonic lattice models. The problem whether the observed
features, the stability band or the ridge structure, can be ob-
served even at the thermodynamic limit remains open to the
future work. In addition to the results mentioned above, it
also has been confirmed that the average variational equation
approach is quite useful, which was proposed as a theoretical
approach to examine the stability of the normal mode in
short periods of time.
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