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Stability of normal mode oscillations of one-dimensional anharmonic lattices
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The stability of motions in short periods of time has been investigated under the single-mode excitation
condition for the Fermi-Pasta-Ulag-model. It is the main concern of this paper to determine the stability
against both the energy density and the excited mode’s wave number. We propose the average variational
equation as a tool for the stability analysis. The stability is also examined by the numerical integration of the
equations of motion and the results are in good agreement with those of the theoretical analysis. We show that
the stability is intricately dependent on the energy density and the excited mode’s wave number. In particular,
it is found that the motion of the normal mode whose wave number is within a specific range is extremely
stable.[S1063-651X96)03311-9

PACS numbdrs): 46.10+z, 05.45+b, 05.20-y

[. INTRODUCTION resonance overlap criterion, taking into account only one of
the resonance terms. Applying the resonance overlap crite-
The study of the stability properties of motions of one-rion, the stochasticity limik, was determined as
dimensional anharmonic lattices started by Fermi, Pasta, and

Ulam [1] was concerned with the dynamical foundations of 1
classical statistical mechanics. It is well known that the ob- Bk’ k<N
served motions were not stochastic but rather regular, con- €~ 5 o (1)
trary to their expectation: instead of the stochastic energy N—k<N
. . 4 ’
exchange among the normal modes, an almost periodic and BN

regular energy exchange was observed. After Fermi, Pasta,

and Ulam’s work, the stability properties of one-dimensionalyhereg is the nonlinear coupling constafitthe wave num-
anharmonic lattices and their relation to the ergodic properper of the excited mode, and the number of degrees of
ties were of great interest, and many studies have been dof@edom. The stochastic motions appear in the energy density
on the problenf2-16]. rangee> e, . Generally speaking, if the mode with the larger
To study the stability properties of one-dimensional an-yave numbek is more stochastic at a fixed energy density,
harmonic lattices, the simplest problem is that of the singlepe €. should decrease with an increase in kheorrespond-
mode excitation or the narrow packet excitation: only ON€ingly. Hence the result of the case k&N in Eq. (1) indi-
normal mode with a wave numberis initially excited or a  cates that the larger-wave-number mode excitation is more
wave packet with mean wave numbkrand small size  stochastic. In view of this fact, the lack of the stochasticity
ok/k<1, wheredk is the characteristic size of the packet in gpserved in Ref[1] was attributed to the smallness of the
k space, is initially excited. This simple problem is importantyaye number chosen in Fermi-Pasta-Ulam’s numerical ex-
to understand the dynamics of one-dimensional anharmonigeriments. On the other hand, Berman and Kolovskij ap-
lattices. However, it has not been fully understood in spite Ogroximated the FPUB model by the nonlinear Schimger
its importance. We will study this problem in the presentequation under the narrow packet conditidk/k<1 to de-

paper. . . termine the stochasticity limj#]. The stochasticity limit was
There are some analytical and numerical results concerrspiained as

ing the problem. It has been found by works followif

that there is a certain kind of the stochasticity limit, which is 272k
defined as the critical energy densignergy per degree of €~ 5oy 2
freedon) distinguishing the stable and stochastic motions. 3BN

First, we speak of analytical results that determine the sto-

chasticity limit against the number of degrees of freedomThis indicates that the larger-wave-number mode excitation
and the wave number of the excited mode. For the Fermiis less stochastic and qualitatively agrees with the result of
Pasta-Ulam(FPU) 8 model, one of the most widely known the case oN—k<N in Eq. (1). These two analytical results
analytical results is that of Izrailev and Chirikov obtained by are necessarily qualitative and perhaps, in our opinion, fail to
applying the resonance overlap criterif8] (see also Ref. grip the whole picture of the stability properties because the
[17]). The resonance overlap criterion had been developed akastic simplifications are introduced in the analyses.

the method determining the stochasticity limit of a Hamil- Regarding the numerical results, the situation is still am-
tonian system with small degrees of freedom. In order tdiguous and there is no definitive result to the problem. Here
apply the criterion to the FP8-model with large degrees of we refer to the results for the FPBmodel presented in Ref.
freedom, Izrailev and Chirikov reduced the dimensionality of[12]. In that paper the authors defined the relaxation time as
the system in a way that could permit the application of thethe time needed for energy concentrated on a narrow packet
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at the initial to be distributed over most of the modes. The d2q;
longer relaxation time can be reasonably considered to mean—zz =0i+1+di—1— 20; + B{(di+1—9)*— (g —qi-1)%}.

less efficient stochastic pumping in phase space. Therefore, (5)
they numerically computed the relaxation time as a measure

of the StOChaStiCity. The observed relaxation time has the For convenience of discussion, we introduce the normal
tendency, roughly speaking, to increase with increasing thehode coordinates. The transformatigr>Q defined by

wave number when the energy density is smaller than a cer-

tain critical value, while the opposite tendency is observed o N1 7k
for the energy density larger than the critical valire Ref. q= N 2 kain<Wi
[12], Fig. 13). Their main consequence is that the stochastic- k=1

ity has the opposite dependence on the wave number be- . .
tween the lower- and higher-energy density range gives the normal modes of the corresponding harmonic sys-

The stability properties of the single-mode excitation ortem'Qk is the amplitude of théth normal mode. The char-

the narrow packet excitation have not been fully understooa",iCterIStIC frequency of thisth normal mode is given as
in spite of their importance in understanding the dynamics of 7k
W= 25"'(

(i=12,...N-1) (6

one-dimensional anharmonic lattices. In fact, the results are

different among the above-mentioned works. The present pa-
er aims to clarify, for the specific case of the FBUWrodel, . .

Eow the stabilityf)c/iepends oﬁ the energy densityBand the wayid terms of the normal m_"de$ co_ordlna@sand the conju-

number when a single normal mode is initially excited. wedate moment#, the Hamiltonian is rewritten as

conjecture that the stability is more intricately dependent on N—1

the wave number and on the energy density, contrary to the H= z (E ) 2+£w 20 2)

simple dependences stated in the above-mentioned works. &2 k2 TkeRk

Our results support the conjecture; the stochasticity of the

2N/’ @)

normal mode is enhanced intermittently in some specific B iy

ranges of the wave number, while the normal modes having + 8N, ki, f a1 Wiy @k, Qi Qi

the wave number within a certain range are extremely stable.

These findings are quite recent and have not yet been re- XD(Ky,Kz,k3,Ka), )

ported elsewhere to our knowledge.
For the above-mentioned purpose, we propose a kind ovhere D(kq,k;,k3,k,) represents the selection rule of the

average variational equation as a tool to examine the stabilitinteraction among the normal modes and it is explicitly writ-

of the normal mode and numerically solve the equation. Tden as

make a comparison, we numerically integrate the equations

of motion of the relevant model, computing the relaxation D(K1,Kz2,K3,Ks) = (ki +ka,k3+ky) + 0(ky + K3, Ko+ Ky)

time to quantify the stability. The present paper is organized

as follows. In Sec. I, we describe the FR8Jmodel, the Okt kg kot ka) + 0(ky ko ks ka)

average variational equation, and the relaxation time. In Sec. + 8(Ky+ Kyt Ky, kg) + 8(ky+ kg + Ky ,Kp)
[ll, we report the results of the numerical calculations and
give the discussion. In Sec. IV, some conclusions are drawn. +6(kotkstky, k) — d(ky+kotks
+ k4,2N) - 5(kl+ k2+ k3,2N+ k4)
Il. DYNAMICAL MODEL AND TOOLS — 8(Ky+ Kyt kg 2N +Ks)

OF STABILITY ANALYSIS
A. FPU-B model and stability of the normal mode ~ 3Ky +katke2N+ky)
In the present paper, our investigation is made for the = O(Kat+katkg,2N+ky), 9

dynamical model described by the Hamiltonian ) ) )
where 6 is the Kronecker delta function. The equation of

Nt . Norq , B . motion for thekth normal mode is
H=22 pi+ 2 | 5 (@0 1)+ 7 (q—ai-1)*,
2= i-12 4 2 B
©) WQK‘F wszk-i— ﬁ
which is called the FPU model. This Hamiltonian de- Nt
scribes the one-dimensional anharmonic lattice with nearest- X 2 @@, @4,01,Qi, Q,Qu,D (K.Ky Kz, ks)

neighbor interaction. We seB=1 and N=128. As the kil k=t
boundary condition we employ the fixed-end condition, i.e., =0. (10

As the stability of the normal mode is the main subject of
the present study, one must be clear about the definition of
the stability. We mention the definition in the following. The
The equations of motion derived from the Hamiltonian are initial condition discussed in the present study is the single-

do=0dn=0. (4)
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mode excitation condition; when thieh normal mode is B. Average variational equation
excited, the amplitudes of the other modes are set to zero at |, this subsection. we describe tawerage variational

the initial condition equation which we propose as a tool to examine the stability
of the normal mode. Let us consider a generic Hamiltonian

Qi(0)=Q;(0)=0(i #Kk). (11)  system of the form
n 2
Due to this init_ial condition_,Qi(t)éO(i#k) ho_Id_s for_a H:E p—i+V(q), 17
short period of timeé << 7. 74 is the time scale within which =1 2

the single-mode oscillation of thkth mode lasts without . i i ) i

significant energy exchange with the other modes. The tim&/NereV(q) is a nonlinear interaction potential amongar-
scaler, depends on the wave numbdeand the energy den- tCleS with unit mass, position§=(qy, .. .,dn), and mo-
sity €, wheree is related to the total energy ase=E/N.  Mentap=(py, . .. ,pn). The FPUB model is also included
We define the stability of the normal mode in terms of the!l this class. The equations of motion derived from the
7e; if 7 is large, the normal mode is regarded as stable. ThE!@miltonian

method of estimating-s by the numerical experiments will
. dql . dp, B AYA .
be described. d__pi’ T (i=1,2,...,n), (18)
If the approximatiorQ;(t)=0(i #k) is made in Eq(10), t t 90

the equation of motion for thieth normal mode, which is the

N . ) exhibit the stochastic motions for most of the interesting
mode excited initially, is approximated as

choices ofV(q). One of the characteristic features of the
stochastic motions is exponential growth of distance between

el 2 OP  4~3_ nearby orbits in phase space. Hence the stochasticity of mo-
a2 At ok Qi gy @ Q=0. (12 tions can be quantified by the rates of the exponential
growth.
It is well known that the solution of Eq12) may be written, The exponential growth of distance is usually examined
with the Jacobi elliptic function, in the form through the variational equation, which is obtained by linear-
izing the equations of motioll8) along a reference orbit
S 2 (a(t),p(t)). Let  &q=(éqy,....60,) and  Jp
Q)= WNa cn(ot,k™), (13 =(ép4, . ..,0p,) be the variations of the coordinates and
the momenta, respectively. The variational equation is given
where in the form
4k/2 wk2 dg_
2 2 K 14 —=A(q(1)§ (19
a 3ﬁwk2(1_2k/2)’ g 1_2k/2! ( ) dt _—

for variations &€= (5q,8p). The 2nX2n matrix A(q(t)) is
andk’ 2 is the modulus of the Jacobi elliptic function. The gefined as -
modulusk’ ? is related to the energy densityas
0

I
_2k'A(1-K'?) s A@D)=| —v(t) o] (20
T 3p(1-2k'H% B - -

€

_ _ ~ where0 andl are thenxn null and unit matrices, respec-
In phase space, the motion associated Wilit) forms iy, andv(g(t)) is thenx n matrix of second derivatives

the  periodic  orbit T(t)=@G(1).B(t)), where § of V whosé elements are defined as
=(qq, ...,Oy_1) is the positions obtained through the

transformation Eq(6) as 2V(q(t))

(V@) :Tﬁqj (21)
qi= \/% 6k5in il

Wi) (i=12,...,N=1), (16 The solution&(t) of Eq.(19) grows exponentially when the
exponential divergence of nearby orbits of the original dy-
- ~ : _ namical system Eq.18) occurs.
and p=(py, ... Py-1) are the conjugate momenta. SinC€  The stability of the normal mode, which has been defined
Qi(t) is not the exact solution but the approximate one, then terms of ther,, can be reasonably considered to be quan-
periodic orbitl'(t) is also the approximate one. In this sense tified also in terms of the exponential growth rates: the
we callT'(t) the pseudoperiodic orbitAn orbit starting with  smallerrg corresponds to the larger exponential growth rates.
the single-mode excitation condition may stay close to theAs we are interested in the short-time stability of the normal
pseudoperiodic orbit during a certain short period, and then imode, the exponential growth rates of the short period of
may diffuse in phase space. The length of the period is chatime t< 74 are useful. Based on the fact that any orbits start-
acterized byrs. That is, 74 is the time scale of the diffusion ing with the single mode excitation condition stay close to
in phase space. the pseudoperiodic orbit for<rg, we employ the varia-
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where &(t; &) is the solution that satisfie§0;&,) = & and
A(T" (1)) stands forA(g,(t)). If we take the ensemble aver-
age in Eq.(25) over the(), we obtain the equation

d
a<§(tv§0)>:<é(ra(t))§(ta§O)>1 (26)

where() represents the ensemble average with respect to the
initial phase pointd™,(0) over theQ). We divide &(t; &)
into the average and the deviation from it,

t; &) =(&(t; + 6&(1), 2
tional equation along the pseudoperiodic orbit to obtain the £t 80)=(&(t:£0)) + 8(1) @)

approximate exponential growth rates of the short period ofnq substitute into Eq26). Then, we obtain
time. That is, the variational equation employed is

d
d (B &)= (AT LN EL ) +(ATL()4D)).
S A@E (9 AT v 8

FIG. 1. Schematic illustration for a pseudoperiodic orbit.

whereq(t) is the positions defined by E(L6). For the FPU-  Since the ensemblf is sufficiently small and close to the

B model with the fixed ends, theN(—1) X (N—1) elements point I'(0), it can beexpected that, for the short period of
of second derivatives df, which are included in the matrix timet< g, the sample orbit¥ ,(t) stay close to the pseudo

é, are written as periodic orbitI'(t). Hence we assume that the second term
) , o that containso&(t) on right-hand side of Eq(28) can be
2 2+3B{(4i— Qi+ )+ (Ai—di-1)},  1=] neglected andA(I',(t)))=A(I(t)). If we admit the as-
={ —1-38(qi—q)? i=j=*1 sumption, then we obtain —
aq;dq; L

0 otherwise. d ~
(23 JilEG &) = AT K&t &) (29)

We make mention of the solution of E€R2). Since the . . . . ) .
(1) is periodic, the matri@A(G(t)) is also periodic. Accord- This equation describes, for the short period of time, the time

ing to the Floquet theory, The solution can be obtained in th&volution of the ensemble average of the variagorEqua-
form tion (29) is just the same as E(R2). Therefore, Eq(22) can

be interpreted as the variational equation, which describes
d(t)=P(t)exptA), (24) the time evolution of the ensemble_a\_/eragegofln_ this
— - — sense, we call Eq22) the average variational equation. The
LCE has the local meaning in phase space, that is, it repre-
sents the mean divergence rate between nearby orbits in the
vicinity of the pseudoperiodic orbit.

where®(t) is the N—1)X(N—1) matrix whose columns
consist of the independent solutions of Eg2), P(t) the
(N—=1)x(N—1) matrix whose elements are periodic func-
tions with the same period a#\(q(t)), and A the
(N—1)X(N—1) constant matrix. It depends on real parts of
eigenvalues of the matriA whether or not the solution of ~ The time scalers is estimated by the numerical integra-
Eq. (22) is unstable(exponentially growiny if there are ei-  tion of the equations of motiof®) to examine the stability of
genvalues of the positive real part, the solution is unstablethe normal mode. In this subsection, we describe how we
The largest real pait,, which is called thdargest charac- €stimaters.
teristic exponentLCE), gives the maximum growth rate of ~ We define the harmonic enerdy of each normal mode
the solution, and it is useful to quantify the stability of the @S
normal mode. The\, is calculated to quantify the stability. 1

At the end of this subsection, we mention the reason why Ei(t)==[Q21) + wQ1)] (30)
we call Eq.(22) the average variational equation. We take 2
the pseudoperiodic orblt(t) = (q(t),p(t)) in phase space. A , o ,
schematic illustration of phase space is shown in Fig. 1. LeRnd the weightsv;, which give the fraction of the total har-
Q be a certain small ensemble of initial phase points near th8'0NIC €NETgy in each normal mode, by
point I'(0)=(q(0),p(0)) and I'(t) be a solution of Eq. E.(1)
(18), which has the initial poini",(0) within the Q. The Wi(t)= o (31)
variational equation alon,,(t) is

2, En()

C. Relaxation time

d
ﬁg(t;§°):é(ra(t))§(t;§°)’ (25 Let us define the spectral entrofyt) as[11]
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N—-1
S(H)= 2, ~wi(DlInwi(1). (32)
=
2
(a) (&
- 55 RN
S(t) can be normalized as Mtk \\\\\\%@\\\\Q&&\\\\s\\s
aRkikkg
0.5 oSOk
Siax— S(t) e we i et
(t)= ax (33) 0 SIS “‘s%?\\\\\\\t Nk
= A e~ N
Smax—S(0) E—————a
S LN

100
where S ,,=IN(N—1). »(t) is a parameter to measure the

extent of the energy exchange among the normal modes. If
there is no energy exchange among the normal modes €1
S(t)=35(0), »n(t) remains unity. On the contrary(t) de-
creases if the energy exchange occugét) =0 represents
the state where energy is equally shared among all the nor-
mal modes. We define the relaxation timg as the time at
which 7(t) reaches 0.6, i.ey(7g)=0.6. The time scale,

can be estimated by calculating the relaxation timede-
fined above. We will use the inverse of the relaxation time (b)
1/7g as a stochasticity indicator, which can be considered
proportional to the stochasticity of the normal mode.

T D RIRTTHH Hi
e e S SNy
e S

TS

0.01 0.01 k/N

100

10

Ill. RESULTS AND DISCUSSION

0.1

It has been studied via the average variational equation
how the stability of the normal mode varies with the wave
numberk and the energy density. We have numerically
calculated the LCE of the average variational equati)
for various sets ok and e. The results are shown in Fig. 2,
where the LCE is plotted as a function of the relative wave
number k/N and the energy density, i.e., Aq(k/N,e).

: e : FIG. 2. (@) LCE A, plotted as a function ot and k/N. (b)
N1(k/N,€) is represented in Fig.(3), and the contour plot is 1 - o
inl$:ig 26))) P 9@ P Contour plot. The reference line of the power lak/) 2 is also

plotted.

| L] PR S WS TS 0.01
0.01 0.1 1

k/N

The qualitatively different new features can be found in
Fig. 2, in addition to the expected tendency thatincreases s
with increasing energy density at a fixed wave number. That / ( k) ' (34)
is, there is the interval in the wave number in whikh
shows a sharp decrease and remains remarkably small even
at the large energy density. The interval is located affhis relation betweer, and thek is in agreement qualita-
k/N=0.7. This predicts that if the normal mode having thetively with that of thee. obtained by Izrailev and Chirikov in
wave number within the interval is excited, it oscillates for aRef.[3] [see Eq(1)]: both €. and thee;, become lower with
long time without significant energy exchange with the otherincreasingk, although they are quantitatively different with
normal modes, namely; (or 7z) of the mode is large. As respect to the exponents of the power laws. Therefdrean
the normal mode in the interval is stable, we call the intervabe considered similar te..
in k space thestability band The other feature is that there ~ We proceed to the numerical experiments to confirm the
are some peaks af,; in the relative wave-number range above predictions made by the LCE analysis. The relaxation
smaller than that of the stability band. Three peaks of théime 7 has been calculated for various setkfl and e to
A1 can be clearly seen &/N= 0.50, 0.34, and 0.24 and make a comparison with the results of the LCE. The numeri-
more peaks, which are very weak, may be perceivable in theal integration of the equations of motion has been per-
smaller wave number range. The existence of these pealksrmed by the leapfrog algorithm because of its symplectic
predicts that the stochasticity is enhanced intermittently ahature and simplicity.
some specific values of tHéN corresponding to the peaks. 7r has been calculated only for odd wave numkefor
We call this feature theidge structure the following reason. If one normal mode is excited initially,

It is seen in Fig. 2 thak, tends to increase dgN in-  the normal modes allowed to be excited are restricted due to
creases at a fixed energy density if one ignores the abovéhe selection ruld(k;,k,,ks,k,): for instance, in the case
mentioned peaks ok;. This means that the mode of the of N=128, (i) if the mode ofk=4 is excited initially,
larger wave number tends to be more stochastic. Corresponil=4,12,20,28,36,44,52,60,68,76,84,92,100,108,116, and
ingly, the energy densitg, at which\; has a certain con- 124 are allowed; (i) if k=16 is excited initially,
stant value, namely, one of the contour curves, is lowere#=16,48,80, and 112 are allowed; afid) if k=64 is ex-
with increasing wave number. Approximately, the following cited initially, no other modes can be excited. A detailed
relation can be found from the figure: discussion on the mode selection has been given in[BEgf.
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FIG. 4. Sectional curves of the 4/ at several different
10 values of the energy density. From top to bottom
€=100,50.2,25.1,12.6,6.31,2.52, and 1.00.

1 and the contour plot is in Fig.(B). For a set ofk/N and
€, we have made the numerical integration with two diff-
erent initial conditions: one, that all energy is given in

®T the kinetic part, i.e., Q0)=0iQ20)=E, and the
other that all energy is given in the potential part, i.e.,
- el 001 Qy(0)=0,30Q(0) + (3B/8N) wQ/(0)=E [cf. Eq. (8)].
0.01 0.1 1 There was no significant difference between the relaxation
k/N times 7 of both initial conditions and we evaluated the re-

laxation time rg by the average of those of the two initial

FIG. 3. (a) Inverse of the relaxation time 44 plotted as a func-  cgnditions.

tion of € andk/N. (b) Contour plot. 1/7s shown in Figs. 8) and 3b) is quite similar to the
LCE shown in Figs. @) and 2b). Interestingly, there is the

As seen in the examples, when the mode of even wave nuninterval in the wave number in which 4f shows a sharp
ber is excited initially, the number of allowed modes is con-decrease and remains remarkably small even at the large en-
siderably different, according to the initial-excited wave ergy density. The interval is found ktN=0.7, which is the
number. This difference has a significant effect on the decagame as the value obtained by the LCE analysis. The exist-
of n(t) and thus onrg, especially in the case that only a ence of the interval is clearly shown in Fig. 4, which gives
small number of the modes are allowed. Th&) cannot some sectional plots of 44 at fixed values ofe. This ex-
reach the reference value of 0.6 when only a few modes angerimental result is quite consistent with the prediction of the
allowed: for instance, as only four modes are allowed in thdCE analysis and gives strong evidence for the existence of
case ofk=16 excitation, n(t) cannot decrease less than the stability band.
1-1n4/In128 (=0.714), which corresponds to the case that The ridge structure can also be found in the wave-number
energy is equally shared among the four allowed modes. Inange smaller than that of the stability band: some peaks of
such a casezg cannot be used as a stochasticity indicator. Inl/7y appear intermittently at some specific valueskol.
contrast, in the case dfi=128, if the mode of odd wave The ridge structure can be seen in Fig. 4, where the peaks of
number is excited initially, all the modes of odd wave num-1/7; indicated by arrows appear &N= 0.50, 0.34, and
ber are always allowed. Then, there is no difference in thd.24. This feature is also in agreement with the prediction by
number of allowed modes. This is the reason why we havéhe LCE. One may suspect that the peaks could be attributed
made the calculation ofg only for odd wave number. to the statistical error. However, we conclude that the ob-

We briefly comment on the reliability of the numerical served ridge structure is not due to the statistical error but the
integration. To examine the reliability, we have used the facintrinsic structure, based on the fact that, in Fig. 4, the peaks
that only the normal modes of odd wave number are allowe@dppear at definite values &N that are predicted by the
when the initial excited mode has odd wave number; thd. CE analysis where is changed.
spectra of the harmonic ener§y have been examined atthe  The decay curves of(t) of the modes ok=85, 65, and
ends of some runs. We confirmed that only the odd modeS1 are shown in Figs.(8), 5(b), and Hc), respectively. The
were excited, while energy of the even modes was suffiabove modes correspond to three typical cases of stability:
ciently small and negligible. This supports the reliability of k=85 (k/N=0.66) andk=65 (k/N=0.51) correspond to
the numerical integration. the stability band and peak of 4/, respectively, and

Figure 3 shows the inverse of the relaxation timegrl/ k=51(k/N=0.40) is chosen from the wave-number range
plotted againsk/N and e. 1/ is represented in Fig.(8  that is neither the stability band nor the peak ofgl/
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1 . . . . . , stability of the mode ofk=51 is intermediate between

. , ‘ (a) | k=85 and 65, it is expected that the behaviorgf) is also

o ‘ | an intermediate one. In fact, the induction phenomenon can
i il be observed for the smaller energy density 0.05, 0.10,

; i
08 i |

i 1 and 0.20, while for the larger energy density 0.50 it can-

08

o7} €=0s ll <= 4  not be observed.

7 0l ! 1 During the induction periods, the energy exchanges
sk - 100 ‘ among the normal modes are weak and regular, which may
el be attributed to the motions stuck in thin stochastic layers of
' the deformed Kolmogorov-Arnold-Mos€KAM) tori. The
esr 1 abrupt decreases of(t) following the induction periods
oz 1 stand for the stochastic energy exchanges due to the diffu-
ot b sion towards the stochastic sea in phase space. Therefore,

vanishing of the induction period can be considered to indi-
% 200 pres o0 200 000 200 cate the destruction of the KAM torus. In view of this, the

time

above examples ofi(t) indicate that, for the modes within
1 - - . . - the stability band, the corresponding KAM tori are not de-
stroyed but persist even at the large energy density, while for
the modes corresponding to the peaks eklhe KAM tori
are destroyed at sufficiently smaller energy density. That is,
roughly speaking, larger 44 means smaller energy density
at which the destruction of the KAM torus occurs. Conse-
quently, the destruction of the KAM tori that correspond to
the single-mode oscillation proceeds quite inhomogeneously
in phase space with an increase in the energy density: the
energy density for the destruction is strongly dependent on
the wave number of the normal mode, affected by the ridge
structure or the stability band. We note that, in the smaller
range of wave numbergoughly k/N<0.10), the induction
period vanishes at much smaller energy density than that
expected from the small 44 of those modes. In this range of
wave numbers, the smallness ofrd/may be mainly due to
the small characteristic frequenay, and does not mean the
persistence of the KAM tori at the larger energy density.
The narrow packet excitation is physically more relevant
than the single-mode excitation. Therefore, it should be ex-
amined whether the above-mentioned features, namely, the
ridge structure and the stability band, are relevant for the
narrow packet excitation. We have carried out only prelimi-
nary numerical experiment, where the narrow packet that
consists of two normal modes with equal energy, an odd
mode and next even mode, is excited as the initial condition.
The features were clearly observed in the experimental re-
sults and then the relevance of the features for the narrow
packet excitation was supported.
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The stability of the normal mode in short periods of time
FIG. 5. Time evolution ofp(t). (a) k=85, (b) k=65, and(c)  has been studied under the single-mode excitation condition,
k=51. for the FPUB model. The main purpose is to determine the
stability against both the energy density and the excited
The induction phenomenof8,9] is clearly seen in all mode’s wave number. As probes for examining the stability
curves ofk=81, in Fig. 5a): »(t) remains almost unity for the LCE of the average variational equation and the relax-
a certain period, which is called the induction period, andation time vz were employed. The results obtained both by
then abruptly decreases. It should be noted that the inductiaie LCE and by the relaxation time are in good agreement
phenomenon can still be observed even at the large energyith each other.
density. By contrast, no induction period can be observed in The results show that the stability is intricately dependent
the curves ok= 65, in Fig. 3b), though the energy densities on both the energy density and the excited mode’'s wave
are much smaller than those of the previous case. Since thmimber. The results can be summarized as follods.
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Roughly speaking, the motion tends to be more stochastic faimilar features may be found in other one-dimensional an-

larger energy density and larger wave numigigy. There is  harmonic lattice models. The problem whether the observed
the interval for the particular stability in the wave number: features, the stability band or the ridge structure, can be ob-
the normal mode whose wave number is included in theerved even at the thermodynamic limit remains open to the
interval is extremely stable, i.e., the stability band. The in-future work. In addition to the results mentioned above, it

terval is located ak/N=0.70. (iii) The stochasticity is en- ga|so has been confirmed that the average variational equation
hanced intermittently at some specific values of the waveypproach is quite useful, which was proposed as a theoretical

number, i.e., the ridge structure. Feat(ineagrees with the approach to examine the stability of the normal mode in
well-known analytical results by Izrailev and Chirikov re- short periods of time.

ported in Ref[3]; however, the other two featurés) and

(iii) are quite different. The finding of these features is the

main consequence of the present paper. .The relevance of ACKNOWLEDGMENT

these features for the narrow packet excitation has been sup-
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